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Degenerate Bose System. II. A Transformation of Quantum Statistical Theory 
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In the first paper of this series, the master-graph formulation of the Lee-Yang quantum statistical theory 
for a degenerate Bose system was derived. In the present paper, this entire theory is transformed from a free-
particle description to a quasiparticle description by means of a A transformation. This transformation 
leaves the master-graph formulation of the theory essentially unchanged, while at the same time introducing 
the quasiparticle energy-momentum relation and the quasiparticle interaction function into the theory. 
The transformation is motivated by a study of the very low-temperature behavior of the fundamental 
integral equation of the theory. An interesting feature of the transformed theory is that it contains two 
quasiparticle energy-momentum relations, e+(k) and e_(&). The understanding of this result is not 
achieved in this paper, although the possibility of a double quasiparticle spectrum has previously been 
suggested by Lieb. 

1. INTRODUCTION 

IN the first paper of this series,1 we have developed a 
quantum statistical theory of the degenerate Bose 

system, extending the earlier work of Lee and Yang.2 

In our first paper, particular attention was devoted 
to the self-energy structure of the graphs of the theory, 
and a final master-graph prescription was developed for 
the various physical quantities, in which the line factors 
included the sum over all possible self-energy structures 
In particular, both the grand potential and the mo
mentum distribution were written down in the master-
graph formulation of quantum statistics. 

In the present paper the formal analysis is continued 
and concluded by the A transformation of the entire 
theory from a free-particle description to a quasiparticle 
description. The reader will undoubtedly wonder at the 
tremendous detail which has been included in a formal 
way in this paper. The explanation for this detail is 
twofold. In the first place, it seems to be mathematically 
necessary to go through all of the steps of this paper in 
order to arrive at a transformed theory, with which the 
application to a real or model degenerate Bose system 
may be relatively straightforward. Thus, it is extremely 
likely that the results of this paper can be applied to the 
study of the microscopic theory of liquid helium II , 
throughout its temperature range, by a simple perturba
tion or graphical series expansion of the general ex
pressions. If so, then this will be a tremendous ad
vantage of the theory. In the second place, this detail 
has been a consequence of the studies of the model Bose 
system of a dilute gas of hard spheres. Continued 
attempts to arrive at the well-known Lee-Huang-Yang 
expressions for the ground-state properties of this 
system3 have uncovered the many subtleties of the 
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theory which are presented here. Without their results, 
the research which has led to this paper might easily 
have failed to uncover the most important features of 
the quasiparticle theory. 

What does one mean by a quasiparticle theory? The 
interpretation which we give to a quasiparticle theory is 
that it is a theory in which the quantum mechanical 
normal modes of a system are exhibited. Thus, although 
real systems consist of real interacting particles, nature 
allows a description of real systems in terms of inter
acting quasiparticles for which the interactions are 
minimized. Of course, it would be nice if nature would 
allow a description in terms of free quasiparticles, but 
this seems never to be the case. For example, the quasi
particles in a crystal, called phonons in this case, can 
only be considered to be free to first approximation. 
Similarly, in the microscopic theory of nuclear matter,4 

one can deduce a quasiparticle description which is in 
agreement with the macroscopic Landau theory of a 
Fermi liquid, and in this case one also finds that the 
quasiparticles interact. If one has once (theoretically) 
discovered the quasiparticle description of a system, 
then the physical properties of the system can be calcu
lated by using an appropriate perturbation theory 
applied to the quasiparticle (or residual) interactions. 
This is the advantage of a quasiparticle description. 

In the present paper we do not exhibit a quasiparticle 
model for a degenerate Bose system, yet we nevertheless 
believe that we have arrived at the quasiparticle de
scription. The reason for this belief is that we feel that 
the quasiparticle description must be intimately associ
ated with a correct treatment of the momentum space 
ordering in the degenerate Bose system, and this latter 
problem is the one we have considered in detail here. 
Thus, we consider a degenerate Bose system at rest, for 
which the occupation of the zero-momentum state is 
macroscopic. This macroscopic occupation is charac
terized by a nonzero value for the density (x) of zero-

4 F. Mohling, in Lectures in Theoretical Physics, edited by 
W. Brittin, B. Downs, and J. Downs (Interscience Publishers, 
Inc., New York, 1962), Vol. IV, p. 436. 
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momentum particles. One can calculate (x) in this 
theory, as shown in MI, and if one finds that (#) = 0, 
then the theory reduces to that of a "normal" system. 

In the case that ( x )^0 , and this is the case for liquid 
helium II , we find in this paper a quantity — A(0) which 
we identify as the energy per particle of the "superfluid" 
zero-momentum particles. Since, for the superfluid, the 
energy is the same thing as the free energy, we set this 
quantity equal to the chemical potential g [Eq. (115)], 
a step which we can mathematically justify on an 
a priori basis only at T=Q. Similarly, the study of the 
momentum space ordering of the nonzero-momentum 
particles in the system leads to a self-energy — A±(k), 
Eq. (26), which we can identify as the potential energy 
of a quasiparticle with momentum k. The energy of this 
quasiparticle, relative to the superfluid, is then given by 
e±(k) = co(k)-A±(k) + A(0), where «(k) is the free-
particle energy [see Eqs. (40) and (131)]. Now, the 
peculiar thing is that we have obtained two quasiparticle 
energies e+(k) and €_(k), and this is a result for which 
we do not yet have an interpretation. I t is interesting 
to note, however, that the suggestion that a double 
quasiparticle spectrum might exist in a degenerate Bose 
system has previously been made by Lieb.5 Finally, we 
have also arrived at the quasiparticle interaction func
tion, and this is the transformed pair function of Sec. 4. 

I t is very convenient to think in terms of the above 
quasiparticle interpretation when proceeding through 
the formal analysis of this paper. We have avoided the 
use of this language in writing the formal analysis, how
ever, because the analysis is mathematically motivated 
with the interpretation coming afterwards. Therefore, 
we now proceed with a discussion of how the momentum 
space ordering is achieved from the mathematical point 
of view. 

In Sec. 2 we itemize the basic quantities used in the 
master graphs of ML In this way, we are able to empha
size those relations which form the basis of the sub
sequent analysis. In particular, we observe that the 
kernal P(s,/,k) in the most important integral Eq. (12) 
of the theory has a part Po(s,t,k), which does not permit 
an iterative solution of (12) at very low temperatures. 
Thus, one is forced to solve the integral Eq. (18), and 
an exact solution of this equation is given in Sec. 3. 

I t should be remarked here that the integral Eq. (18) 
provides the important stepping stone to the A trans
formation of Sec. 5. Now, when the A transformation 
was first studied for the case (x) — 0, and for Fermi 
systems,6 it was found that only the first two terms of 
Po(h,hM), Eq. (16), entered into the theory. I t is 
therefore quite natural to use this simplified form for 
Pofe^i,k) when (X)T*0. Such an attempt fails com
pletely, because the very low-temperature behavior of 

5 Elliot H. Lieb and Werner Liniger, Phys. Rev. 130, 1605 
(1963); Elliot H. Lieb, ibid. 130, 1616 (1963). 

6 F . Mohling, Phys. Rev. 122, 1062 (1961). 

the theory is not properly treated when this is done 
This simplified approach also fails to yield the Lee-
Huang-Yang results3 for the hard-sphere Bose gas. One 
is thus forced to consider the entire complicated ex
pression (16) for P0(t2,thk). 

In Sees. 5-8, the A transformation of the theory is 
performed. This transformation starts from the observa
tion that the solution G0(t2,h,k) to the integral Eq. (18) 
is really only a first approximation to the solution to the 
basic Eq. (12). Therefore, the function Go(Wi,k) can 
occur along any of the internal lines of the master 
graphs as part of the self-energy factors, and therefore 
one encounters integrals over pair functions (the vertex 
functions of the theory) everywhere. These are the 
integrals (35) which are studied in detail in Sec. 4. In 
simplest terms, the A transformation is nothing more 
than the elimination of the explicit appearance of the 
(large) function G0fe^i,k) in the theory by performing 
the integrals (35). I t is only when one wants to insure 
that these integrals are actually performed everywhere 
that one arrives at the concept of a linear integral 
transformation (on a very nonlinear theory). The full 
study of this A transformation, of which there are four 
different cases, is the content of Sees. 5-8. Thus, the 
basic A transformation is introduced in Sec. 5. In Sec. 6, 
the transformation of the line factors of the master 
graphs is studied, and an expression for the momentum 
distribution in the transformed theory is derived. In 
Sec. 7, the zero-momentum factors are transformed, and 
in Sec. 8, the grand potential is transformed. Finally, 
in Sec. 9, the four functions A(/2,/i,k) are discussed in 
detail, for it is these functions which really characterize 
the A transformation equations. These functions and the 
related functions ?(£,k) appear explicitly in the expres
sions for the transformed momentum distribution and 
grand potential. 

From the above discussion one can see that the 
A transformation provides the solution to the low-tem
perature self-energy problem, which is presented by 
terms of the form P 0 (Mi,k) . Thus, after the A trans
formation, the transformed basic integral equation (59) 
can be solved approximately by iteration (as can all the 
other transformed integral equations of the theory). 
The A transformation is therefore also a key to the 
microscopic understanding of the momentum space 
ordering in the degenerate Bose system, although this 
key can really only be turned by making an application 
of the theory to a real or model system. One is able to 
make a start towards understanding this ordering, how
ever, by considering the few quantities which have 
already appeared in the formal analysis. Thus, the 
A transformation changes the free-particle energies 
(almost) everywhere to the functions co(k) —A+(k), 
co(k) —A„(k), and — A(0), and this change strongly sug
gests the quasiparticle interpretation given above. 
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2. INVESTIGATION OF THEORY AT VERY 
LOW TEMPERATURES 

In the development of a quantum statistical theory 
of the degenerate Bose system in MI, our principal 
objective was the analysis of the self-energy graphs of 
the theory. Thus, in the final formulation derived in 
MI, the grand potential and the distribution functions 
for an arbitrary Bose system are expressed in terms of 
master graphs whose line factors represent the sum over 
all possible self-energy graphs. We shall not repeat the 
rules and equations of this final prescription here; but 

rather, we shall summarize the ingredients, or building 
blocks, for master graphs. I t is the investigation of 
these basic quantities which provides the motivation 
for the analysis of the present paper. 

The first quantity which we shall write down is the 
pair function [MI , Eqs. (18)-(20)], which is the vertex 
function of the theory. The dynamics of the Bose system 
is determined by the pair function because it is the only 
function of the theory which explicitly depends on the 
elementary two-body interaction between two free 
bosons. In a preceding paper,7 we have studied the pair 
function in detail. Thus, its general definition is 

Lk3k4 J to Lkgkjfo 

'rkika-j 

LkskJto 

0(fe-/i)0(*i-*o)+ 
"kika" 

.k3k4. 
e(h-t2)e{t2-h) if h^h, 

if h = t2, 

" r k * [KlK2-| 

LkakJ* 
= (kik* | R(h,t0) | k3k4)+ (kxk21 R(tuh) | k4k3), 

(1) 

(2) 

where e(y) = 0 if y < 0. I t can be seen by iterating the expression 
for W2(t2jh) and then substituting the result into R(t2,h), 
that the pair function (2) is a sum over all "ladder 

/^N diagrams" (using the language of field theory). For a 
weak potential, one can use simple perturbation theory 
to determine the pair function. 

Most realistic two-particle interactions contain a 
(4) repulsive core, and this is certainly true of the interac

tion between helium atoms. Since the repulsive core 
(5) plays a dominant role in the Bose many-body problem,8 

one cannot use perturbation theory to determine the pair 
Equations (3) give the operator form of the pair function function. Now, although the two-body Schrodinger 
in terms of the two-body potential in the interaction equation for a realistic helium interatomic potential 
representation (4). Equation (5) expresses the two-body cannot be solved exactly, one can nevertheless write 
Hamiltonian H(2) as a sum of a free-particle part #o ( 2 ) down the form which Eq. (2) takes for a general potential 
and the two-body interaction V2. The 6(y) in Eq. (1) by using techniques from scattering theory. The result7 

are step functions, defined by 6(y)=l if ;y>0 and is 

R{h,h) = -W2(h,tl)V{h)1 

W*(t2,ti) = l - dsW2(t2,s)V(s), 
J h 

V(t) = exp(tHQW)V2 e x p ( - / # 0
( 2 ) ) : 

H^ = H0^+V2. 

<Tkik2' rk1k2~| 
= exp[/i(coi+co2—o>3—w4)]/i(kik2|k3k4)+]C exp[/2(wi+o>2—co5—co6)] 

Lk3k4Jf0 k5k6 

Xexp[^i(co5+co6—co3—oj4)]/2(kik21 k5k61 k3k4)pf • 
1 

)+Kh~h) 
,C0i+C0 2 — C O B " C 0 6 / 

Xexp[^i(wi+w2—W3—w4)]/3(kik2|k8k4), (6) 

where each of the fi functions can be expressed entirely 
in terms of two-particle reaction matrices, which are 
well defined, even for an infinite repulsive core inter
action. The free-particle energies coz- are given by 
a)(k) = fi2k2/2M in the limit of an infinite system, and 
the function / 3 is to be included only when one wishes 
to use the mathematical idealization of an infinite repul

sive core. For a finite or penetrable repulsive core, / 3 = 0 . 
The usefulness of Eq. (6) is that it explicitly exhibits the 

7 F. Mohling, Phys. Rev. 122, 1043 (1961). See also F. Mohling, 
ibid. 124, 583 (1961). 

8 F. London, Super fluids (John Wiley & Sons, Inc., New York, 
1954), Vol. II. On pp. 30-35, the importance of the hard core to a 
microscopic understanding of liquid helium II is demonstrated. 
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form of the temperature dependence of the pair function 
for an arbitrary two-particle interaction. 

We next consider the line factors of master graphs. 
These are given as the solutions of integral equations, 
derived in MI . We shall first concentrate our attention 
on the kernels and inhomogeneous parts of these integral 
equations. As we have previously shown, the line factors 
arise from both dynamical and statistical effects. The 
effect of statistics, or exchange, is primarily determined 
by the function p(p), 

L>2,0\fa,t. 

where 

*k)= [ 
Jo 

dszdsxd^li&ffiGihji, — k) 

XK,.0(st,suk)-S(it,h)K*.ow(t*,tiM) , ( I 4) 

Gi.i(fe,ii,k) = Kh-^+UMhfc), (15) 

Kp) = exp0(g--cop)[l--exp/3(g-a>p)]- (7) 

where g is the thermodynamic potential per particle in 
the system and /3= (nT)*1. In this paper we continue to 
use the convention of M I that k —» p when k cannot be 
zero, i.e., pp^O. The function v(p) occurs as an inhomo
geneous term and as a factor in the kernels of the 
integral equations [MI , (35)-(37)] for theNM,v(p). The 
functions N^,v(p) then give the direct effect of statistics 
on the master-graph line factors SM,?(Mi,k), Eqs. (66)-
(72) in MI . 

The dynamical part of the line factors is primarily 
due to the functions KlltJ,(t2,h,'k) of Eq. (73) in ML 
These functions given by 

KptV(t2,ti,k) 
= D [an< different master (jitv) L graphs]k, (8) 

where Gu,̂ ) = (1,1), (0,2), or (2,0), play a central role in 
the analysis of this paper. Closely related to the 
K^ihyhM) is the function [MI, Eq. (62)] 

P(t2,thk) = Khl(t2,thk)+ / ds1ds2K2,0(t2,shk) 

where 

and the functions i£0,2(1)(Wi,k) and i£2,o(1)(Mi,k) are 
defined below Eq. (59) in ML 

Having completed a review of the basic quantities in 
the theory, we are now in a position to begin the analysis 
of this paper. Our first step will be to write down a 
special class of terms which occurs in the function 
P(t2,h,k) of Eq. (9), and we shall define the sum of these 
terms to be P0(^^i,k). The general form of P0feA>k) 
is then 

[l+S(k)]P0(*2,*i,k) 

= [ i 4 ( k ) + B ( k ) 5 ( / 2 - / i ) + C ( k ) ] ^ 2 - ^ ) 

+C(k) e x p [ ( f c - / i ) W ] 0 ( * i - / 2 ) 
- C ( k ) exp[-^L>(k)]+exp[- /3Z)(k)] 

X [ S ' ( k ) + £ " ( k ) expt*D(k)ld(p-h), (16) 

where each of the quantities A, B, C, etc., may have a 
dependence on /?, although this has not been explicitly 
indicated in (16). The factor [ l + $ ( k ) ] on the left-hand 
side of Eq. (16) is introduced for convenience [see below 
Eq. (19)]. One can demonstrate the existence of each 
of the terms in Eq. (16) by a simple lowest order calcula
tion of each of the functions i£M)l,(/2^i,k) which con
tribute to Eq. (9). Thus, one has only to use the one-
vertex master (n,v) L graphs of Fig. 1, in connection 
with Eq. (8), to obtain the expressions 

X G ( v i , -k)K0,2(ths2,k), (9) Kltl(t2,thk)0=(x^e^) / dsGmt(s) 
Jo 

<2Srk 0 °1 Gu 

0-L 
(h) 

G(t2,hM) = Kt2-h)+L(h,t1,k), (10) 

L(t2,thk) = dsG(t2js,k)Kltl(s,tuk) • (H) 
Jo 

The functions ZM)„(/2,/i,k) and P(t2yh,k) are kernels 
in the integral equations [MI , (63)-(65)] for the 
LpAfoythk), and the £M)„(Mi>k) then give the direct 
effect of dynamics on the line factors gM,„(£2)/i,k). We 
shall require these integral equations in the present 
paper, and so we repeat them here. 

i(xQefia) L oi' (17a) 

£o.2(fe,*i,k)o = K ^ 2 * 0 / d^ds! 
Jo 

sis2r-Q Q-

XG0ut(s2)G0X1t(si) 
Lk — k. 

Kh-h) 

rP 

Li,i(t2,ti,k)= / dsGlti(t2,s,b)P(s,h,k), 
Jo 

fP 

Jo 

^(xtte2^) 
(12) 

-o o-

„k 

'"Tk -k~ 

ds2dsiKQl2(s29sl7k)Gltl(s2,t2,k) 

XG(sl9tu ~ k ) - Z 0 f 2 ( 1 ) ( M i , k ) , (13) 

1 Kh-h), (17b) 
-kJti 

^2fo(/2,/i,k)o=i(«0) / ds I {_Gin(s)J 
Jo Lo oJs 

1 0 

rP t2h 

^h(xQ!) ds 
Jo 

k ~k 

L0 0J. 
(17c) 
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FIG. 1. The lowest order approximations to the functions 
irMl„(/2,/i,k), where fx-j-v = 2, are the three one-vertex master (/*,*>) 
L graphs shown. 

where we have approximated the zero-momentum fac
tors (Sec. 5 in MI) by GOutM=5(0-*) and Gin(s)^l. 
By using the explicit form, (1) and (6) for the pair func
tion, and setting G(t2,thk)~8(t2—h) in Eq. (9), one can 
demonstrate that Eqs. (17) lead to terms of the form 
(16). The question as to whether or not the terms (17) 
constitute a good first approximation to the KplV(t2,ti,k) 
will be dealt with at the end of Sec. 5 and then again in 
the third paper of this series. The approximation 
G(t2,thk)~:8(t2—h) and the zero-momentum factor ap
proximations will also be considered more carefully as 
our analysis progresses. 

Consider now the consequence of substituting Eq. (16) 
for Po(Mi>k) into the integral Eq. (12). We shall define 
the corresponding solution to this integral equation to 
be Z0(/2,*i,k). Then 

re 
£o(fa,*i,k)= / dsG0(t2,s,k)P0(s,thk), 

Jo (18) 

G0(Mi,k) = 5 ( / 2 - / i )+^o (Mi ,k ) . 

I t will be shown in the following section that the solution 
to the integral equation (18) involves temperature ex
ponentials, and that all of the terms of (16) contribute 
in some way or other to these temperature exponentials. 
Let us suppose that a particular temperature exponential 
in the solution to (18) is exp(/2A), where A(k) is well 
denned in the limit (3 —•> oo . Then, at very low tempera

tures, regardless of the sign of A, no power series expan
sion of this temperature exponential is valid. Therefore, 
the existence of terms of the form (16) immediately 
implies that the iterative solution to Eq. (12) is not 
valid at very low temperatures. This analysis, therefore, 
has already demonstrated the necessity of the careful 
study of the self-energy structure of the quantum sta
tistical theory in M I which led to the integral equations 
(12)—(15) and the master-graph formulation. 

We shall return to the analysis of this self-energy 
structure in Sec. 5 after studying the integral equation 
(18) and some of its consequences in the next two sec
tions. The role in the theory of the part of P(/2,£i,k), 
which is not of the form P0fe^i,k), will also be clarified 
in Sec. 5 [see Eq. (60) and below]. 

3. FUNDAMENTAL INTEGRAL EQUATION 

The fundamental integral equation in the analysis of 
this paper is Eq. (18), with the kernel (16). At the end 
of the preceding section, we have demonstrated that at 
very low temperatures no iterative expansion of this 
integral equation is valid. Therefore, this equation must 
be solved, and in fact, we shall now give the exact 
solution. We shall not go through the derivation of this 
solution, but rather, we shall write the solution down 
and then indicate how to verify it a posteriori. Thus, 
one finds that 

G 0 ( ^ i ) = ( l+5){[ f i ( /2- / i ) + A 4 .C + o)( / 2 )^ l A + 

+ [A+C+«> fe)e-'lA+- A_C_(<) (t2)e-^A-

+B^(t2)8(p-h)y(h-t2)}, (19) 

where the quantity B appears only in the over-all multi
plying factor (1+2?) when this factor is also introduced 
on the left-hand side of (16). In Eq. (19) and throughout 
the rest of the paper, we shall frequently omit the de
pendence on k from the notation for the various 
quantities. Of course, this can only be done when there 
is only one momentum variable in an equation. 

The proof that the solution (19) is correct can be made 
by substituting Eq. (19) into Eq. (18) and then perform
ing all of the integrations on the right-hand side of (18). 
One then matches the coefficients of similar /i-dependent 
exponentials on both sides of (18) for the two cases 
t\>t2 and h<fa. This gives the following five identities: 

[C+(»(/2)-C+«)(/2)>-^+ 

- \+[cj>\t2)-~cj<\h)y-^~, (20) 

C+<<Kh)(re*+=CJ<Kh)e-e*-+B<<)(ti), (21) 

ZA+(A+-DyiC-C-]C+^(t2) 
= [A_(A_-i5)^C-C /]C-<»a2), (22) 

A+(A+~2))-1[C+(»fe)-C+«)(/2)>~~^+ 
= l+A_(A_- JD)-1[C_(»fe)-C_« )(/2)>-^-> (23) 



A860 F R A N Z M O H L I N G 

lB'+^+-D)-iB"-]C+(>\h) 

- [ J8 , +A_(A_-P)- 1 5 / / ]C-C>>(^) 

- [\+D(^-D)-iB"-\CJ<\h)e-^-}. (24) 

One also obtains a single equation for the determination 
of A+ and A_, 

A±"-(A+D)A±+(A+C)D=Oy (25) 

which has the solutions 

A ± = h(A+Z>)=Fj[(i4 -Dy- 4CDJ'*. (26) 

I t should now be clear that the solution (19) for 
Go(t2,h) is correct because the five quantities C ±

( > ) , 
C ±

( < ) , and P ( < ) are completely determined by the five 
linearly independent equations (20)-(24). These simple 
algebraic equations can be easily solved, and we shall 
write down the solution in Sec. 9 for the special case 
when the B's are all zero. For the rest of this paper, 
however, it is not necessary to have explicit expressions 
for the quantities in the solution (19). I t is only sufficient 
to know the general form (19) of the solution for Go (Mi) • 

There is another reason why it is inappropriate to 
discuss the solution to Eqs. (20)-(24) here. This reason 
is connected with the fact that whereas the A trans
formation of Sec. 5 leaves the form of Go(Mi) invariant; 
at the same time it causes one to focus attention on a 
new quantity A(/2^i) and its relation to G0(/2^i) rather 
than on G0, Po, and the integral Eq. (18). This very 
subtle point will be discussed in detail at the end of 
Sec. 4 and below Eq. (53), but for the present it is 
sufficient to point out that this subtle point has the 
effect of changing the identities (22)-(24). Only the 
basic identities (20) and (21) remain invariant under the 
A transformation, and the reason for this is because 
they do not depend on the particular quantities in 
Po(Mi)> Eq. (16), except through the functions A+ and 
A_. I t will be seen in Sec. 4 that the identities (20) and 
(21) are essential to our analysis. 

We next write down an important integral of GoOMi). 

[* 
I dhGofaji) 

J t0 

= (i+P){Cc+(»(/2)e-^+-c_<»fe)^foA-]^(/2-/o) 
+ lC^<Kt2)e~t^-CJ<Kh)e-^-y(t0-t2)}. (27) 

In the evaluation of this integral we have used the 
identities (20) and (21). For the special case when to=0, 
we define this integral times a factor to be a quantity 
f(*,,k). Then 

X dtiG0(ti9h9k) 

= e x p [ - ^ k + A < ° > ) ] 

X[C+0)(/a,k)-C-.c»(/2,k)], (28) 

where the function A(0) will be defined in Sec. 7 [see 
also Eqs. (33) and (34)]. 

We conclude this section by discussing two special 
cases of the above results. The first of these cases occurs 
when one considers the integral equation (11) instead of 
(12). In this case we define the special class of terms in 
Ki,i(h,thk) [which result in a temperature exponential 
solution to the integral equation (11)] to be Kow(t2,h,k). 
The general form of i£0

(1)(Wi>k) is 

Xo (1)(Mi?k) = [ l + ^ d ) ( k ) ] - i 

XtA«Kk)+B^(K)Kh-ti)y(t2-h). (29) 

One can easily verify that terms of the form (29) occur 
in Z i , i ( ^ ^ k ) by substituting Eq. (6) into Eq. (17a). 

We shall define the solution to the integral equation 
(11) which results when £ 0

( 1 ) (Mi,k) is used for the 
kernel to be Z,0

(1)(Mi,k). Then 

Lo ( 1 ) (Wi,k)^ f dsG0^(t2,s,k)Ko(1)(s,hM), 
Jo (30) 

GQ^\t2AM)^Kh-t1)+L0^(t2,hM)^ 

The solution to Eq. (30) is readily found to be 

Go(1)(*2,*i) = [ l + £ ( 1 ) ] 
X [ 5 f e ~ / i ) + A ^ expfo-tdAwyfo-h), (31) 

and in this case the integral corresponding to Eq. (27) is 

[ dhGow(h,h) 

= [ l + P ( 1 > ] e x p [ f e - / 0 ) A ^ ] ^ 2 - / o ) . (32) 

The other special case occurs only when k = 0 , and 
this case will be discussed in detail in Sec. 7 when the 
zero-momentum factors of master graphs are considered. 
In this case, there is no integral equation such as (18) 
or (30) to motivate our determination of Go(0)(Wi)« 
Rather, we shall merely define this quantity to be of the 
form (31): 

G 0 (o ) ( W l )^ [ l + J B(o) ] 

X[<5( / 2 -O+A ( 0 ) exp(* a -OA ( o ) ]0( /2-*i) , (M) 
with 

I ^iG0
(0)OVi) 

- [ l + P ( 0 ) ] e x p [ ( / 2 - / 0 ) A ^ ] ^ ( / 2 - ^ o ) . (34) 

The definitions of the quantities A(0) and P ( 0 ) will be 
made in Sec. 7. 

We finally observe that the functions G0
(1)fe^i) and 

G 0
( 0 ) (^ i ) of Eqs. (31) and (33) can be considered to be 

special cases of the function G0(/2,/i), Eq. (19). One has 
merely to set C±« ) = P ^ = C>. (»-0 in Eq. (19) and 
to set C+

(>)(/2) = 0'2A. If the appropriate superscript (1) 
or (0) is then attached to the quantities A and B, then 
one obtains either Go(1)(/2?/i) or Go(0)(Mi)-
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4. PAIR-FUNCTION TRANSFORMATION 

In Sec. 3 we have arrived at explicit expressions for 
Goifaji) and £r0

(1)fe^i). The question now arises as to 
how these two (and also two other) functions are to be 
used in the theory. The obvious answer to this question 
is to use them as first approximations to the functions 
Gi,1(̂ 2,̂ 1) and G(t2,ti), and to then start calculating 
thermodynamic quantities and distribution functions. 

But in the master graphs, the functions Glfi and G 
usually appear multiplied by pair functions, and these 
products are to be integrated over temperature vari
ables. Thus, we are led to consider such integrals, and 
the consequences of this consideration then motivates 
the A transformation of the next section. 

In anticipation of the next section, we now define a 
transformed pair function as follows: 

\ ^^toM^itoMrKhMdr^M exp[>(c08+«4+2A<o>)] 

r" s l S 2fkik2 l 
X e x p [ - ^ ( c o i + A ^ ) ] exp[-/2(co2+A(°>)] / dslds2Go(thslykx)Go(t2,s2yk2) 

Lk3k4 

k3k4 

, (35) 

where the function f(^,k) is denned by Eq. (28) and o>»=co(k»). Aside from the over-all multiplying factors, the 
definition (35) consists of precisely the kind of integrations referred to in the preceding paragraph. By using 
Eq. (1), this expression can be rewritten in the following form: 

^ T k i k a V 
[ * ' I =t(toMt(hM4)rKhMi)rKhM2) exp[/o(co3+a>4+2A(°>)] exp[-*i(Wl+A<<>>)] exp[-*2(a>2+A«»)] 
Lk3k4J<o 

rkik2-i [P r^- } ' T k i k r 
/ ^ 2 G 0 fe^ 2 , k 2 )+ / ds&o(t2,S2jk2) 

LKzkiJtoJ 81 J to Lk3k4_ / 
J to 

X / dsiGo(ti,si,ki) f dsiGoih^kx) I . (36) 

We note that if the Si integrations are performed last in both of the two terms of Eq. (36); then one will always have 
s2<si<l3 in the second term. Therefore, the B(<)(t2) part of the second term will make no contribution. To account 
for this situation we have written the upper s2 integration limit of the second term as ^ ( - ) . Of course, we could 
just as well attach the superscript ( —) to the upper si integration limit of the first term, there being no difference 
in the final result. 

We wish to perform the integrations in Eq. (36). Two of them can be accomplished immediately by substituting 
Eq. (27). One must then substitute Eq. (19) and perform the remaining single integrations, of which there are 
many. Fortunately, except for simple 5-function integrations, these remaining integrations can all be accomplished 
with the aid of a single identity; namely, 

[A^kO + A^k,)]/" ^1exp[-^1(A±(k1)+A±(k2))] |~ * *1 
J to Lksl^Jjo 

exp[-/o(co3+co4+2A(0))]-exp[~^1(A±(k1)+A±(k2))] I , (37) 
, Lk3k4J*0 

where 
(±.±) .k3k4J 

*rk ik 2 T 

(*,y)Lk3k4Jf0 

sexp[/0(€t(ki)+€i(k2))]g.- ty(kik2|k8k4)+E exp[/i(€4<ki)+€y(k2)-€(k5)-e(k6))] 
kfik6 

Xexpp0(e(k6) + 6(ke))]/2(kxk21 k6k61 k3k4)P +5(1,-10) 
e»(ki) + €j(k2) — e(k6) - e(k6) > 

Xexp[<„(e i(k1)+eJ(k2))]/3(k1k2 | k3k4) , (38) 

gijk,kt | k ^ s / i C t k , | k3k4)+ZAi(k1)+A;-(k2)]/3(k!k21 k3k4) 

1 
+ £ /2(kik2|kBk6|k3k4) 

ksk6 IX— 
1)+e(k2)-£(k5)-,(k6) 

e ± ( k ) ^ ( k ) + A < ° > - A ± ( k ) = e ( k ) - A ± ( k ) , e(k) = co(k) + A<«, 

e i (k)=«(k)+A<«-A<»(k) = «(k)-A<1)(k), «o=0. 

w — ' — ) i (39) 

(40) 
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The proof of Eq. (37) can be made by simply substituting Eq. (6) into the left-hand side. I t should be observed that 
there are four possible applications of this identity corresponding to the two pairs of ( ± ) signs. The quantities 
€i(k) and e0 defined in Eqs. (40) have not occurred in any of the preceding expressions, but we have included them 
because they will be encountered below. We finally remark that the introduction of the e's, Eqs. (40), has not been 
done to simplify Eq. (38) or (39), but rather to simplify subsequent expressions and their eventual interpretation. 

Even with the aid of Eq. (37), it is extremely tedious to derive a final useful expression for the transformed pair 
function (36). We shall omit the numerous albegraic manipulations and give only the final result. 

Lk3k4 

where, with i = + or 

w*rkik2 

J*o *=+-,- I (t-(<)Lk3k4J<0 (i(»Lk3k4J*0) 

ASOitM^ll+BQOl exp[-fe(k)]C.-«>(/,k), 

At<»(tM = ll+B(k)l expC-^OOHQO^k), 
(42) 

tlt2rhik2-

k3k4. «,o 
- £ 3 ^ ( < ) fek 2 ) 

8rk ik2 

(t',i)'-k3k4. 

+ ^/»(/2,k2)J 

W 2 Y 

*kik2-

3k4. 
0( * 2 - * i )0 ( *2 - *o ) -

to (i,3) 

6(h-h)-
*0 ( t , j ) l 

e{k-k)\d{t2~h) 

<1'2rk1k2n 

(*•» -k8k, 

to (i,i)Lkj 

<2rkik2-] 

i,y)Lk3k4J 

f *rkik2Y Y ^ T 
=+ - 1 (*,y)Lk3k4J*0 a,3) Lk3k4J^0 

= E iU/<}fe,k2) e{h~h)~ e{h-tQ)\d{h-h) 
-1*0 ^'=+- L [ (^yjLk^Jfo (^y)Lk3k4Jf0 J 

6(h-h)d(h-t0) 
to 

^ r k i k 2 n / 

if h^t2 

if h=h, (43) 

, < i r k i k2i / T W ^ Y 
+ ^ly(»(/2,k2){ 0(**-*l) + ^ i - / , ) [ ^ i - / 0 ) ^ ( / 2 - f o ) 

( t . ^ L k ^ J ^ (^y)Lk3k4Jf0 

<1rk1k2-1
/ <1rk1k2-1
/ 

j(y)Lk3k4Jio 

if / i ^ / 2 

if h = h. (44) 

In Eq. (41), attention has been focused on the variables h and ki, thereby apparently destroying the symmetry 
of the transformed pair function. Thus, from Eq. (35) it is easy to see that the transformed pair function is invariant 
under the interchange (/i,&x,k3) ;=± (£2,&2,k4). However, one can verify that this invariance is still present in Eq. (41) 
when Eqs. (43) and (44) are substituted. One should also observe that the untransformed pair functions of the 
second term in (37) have all canceled out in the final expression (41). This cancellation has been achieved with the 
aid of the identities (20) and (21). 

Equation (41) can be greatly simplified in the important case when only the first term of Eq. (38) is retained. 
One then obtains the approximate expression 

^2rk1k2-|/ 

Lk3k4 
=f(/o,k3)f(/o,k4)r

1(/i,ki)r1(fe,k2) E iL^i^KhMMk-to+A^ihMOdik-toy] 

X 

where 

VkikA '2/kik2\ 1 
( ) e(t0-t2)+ I J e(h-h) , (45) 

•(*,<) \k3k4 / f0 (* ,»\k3k4/<0 -I 
<V k l k 2 

( I = E i^y(<)(/2)k2)^y(k1k2|k3k4)exp[/o(€,<k1) + ey(k2))], 
(»-,<) \k3k4/*0 /=+,-

( / / ) - E i^y (> )fek2)^y(k1k2 |k3k4)exp[/0(6,(k1) + 6y(k2))]. 
( t ,» \k3k4/f 0 /=+,-

(46) 
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The expression (28) for f (/,k) can also be simplified by 
using the second of the definitions (42). This gives the 
result 

f«)k) = Cl+£(k)]-1C^+(»a,k)-^_(»«,k)]. (47) 

We next discuss the special cases which occur when 
either or both of the G0 functions in Eqs. (35) is replaced 
by a G0

(1) or a G0
(0) function. According to the last 

paragraph of Sec. 3, one can immediately obtain either 
of these cases from Eqs. (41)-(47) by setting ^4±(<) 

= yl_(» = 0. The quantity ^+
( > ) ( / 2 ,k) then becomes 

either A(1)(t2jk) or A(0\ where [see also the second of 
Eqs. (42)] 

^ ^ ) ( / 2 5 k ) ^ [ l + ^ ( 1 ) ( k ) ] e x p [ ~ / 2 6 1 ( k ) ] , 
^1(0) = [ 1 + 5 ( 0 ) ] . ( ) 

Here, the quantity ei(k) is defined by the third of Eqs. 
(40). Similarly, the function f(2,k) becomes either 
f (1)(/,k) or f <°>, where 

f ( i>( / ,k)sexp[- / 2 ei (k)] , 

I t should be noted that either the outgoing or the in
coming £(i) factors in Eq. (41) can be replaced by one 
of Eqs. (49), the particular choice being determined as 
indicated below Eq. (65). Finally, the ( ± ) signs of 
Eqs. (38), (39), etc., must be replaced by either of the 
indices (0) or (1) when G0->Go ( 0 ) or G0->Go ( 1 ) . One 
must then refer to the last two lines of Eqs. (40) for 
the appropriate e quantity. 

Motivation for the A Transformation 

We now return to the discussion below Eq. (26) and 
observe that if one computes the function P0(t2jthk) of 
Eq. (16) before the integral (35) is performed, then one 
will get some result. However, the integral (35) has the 
effect of introducing more terms of the " type" Po(t2jh,k) 
into the theory. This last assertion can be qualitatively 
verified by comparing Eqs. (6) and (38) and observing 
that a major difference is the replacement of / i in (6) 
by gij in (38). Of course, the temperature exponentials 
have also been changed in (38), and this suggests that 
the very basis for emphasizing the importance of the 
integral Eq. (18) has been destroyed by the integral (35). 

The confusion of the preceding paragraph is inten
tional, for the important point is that as soon as one 
performs the integral (35) to obtain Eqs. (41)-(44) and 
(38)-(40), one has eliminated the role of the integral 
Eq. (18). The important terms in the theory are no 
longer those of the form P0(t2,thk), Eq. (16), but rather, 
a new set of terms of the form A(t2,hM)- The question 
now is: How can one identify those terms A(/2,^i,k) in 
the theory, which, after the integral (35) is performed, 
give the dominant contribution to the theory at very 
low temperatures? This difficult problem is solved by 
performing the A transformation on the entire theory. 

After the A transformation, it is then easy to choose the 
function A(/2,/i,k) in such a way that iterative solutions 
to integral equations of the type (11) and (12) become 
valid. I t remains to be said that the difficulty of properly 
motivating the A transformation is mostly due to the 
fact that one really only understands it by hindsight. 

5. A TRANSFORMATION 

Section 4 has been devoted to the study of the integral 
(35), and the results of that section are very important 
for any application of the theory to a real or model Bose 
system. None of these detailed results are required in 
the formal equations of the present section, however, 
for only the insight which they have provided is neces
sary here. Thus, we shall begin by defining the function 
A(/2,/i,k) as follows: 

XCGo(fe^i,k)-«(/2-/i)]f(^i,k)e^ck). (50) 

With the aid of Eqs. (19), (40), and (42), this definition 
can be rewritten as 

AihM^-rKh^ihXLBdih-td + A+A^Kh)^^ 
~- &-AJ>\h)e^-~]6(h-h) 
+ l&+A+^(t2)e

t^-~A-.AJ<\t2)e
t^ 

+B0(t2)8(l3-t1)y(t1-t2)} , (51) 
where 

Bo(h)=(l+B)Bi<Kt2)e«-v*. (52) 

We shall see that the function A(t2,thk) plays the same 
role after the A transformation as the function P0(Wi>k), 
Eq. (16), plays before the A transformation. Moreover, 
Eq. (50), which gives the relation between G0 and A, 
replaces Eq. (18), which gives the relation between G0 

and P 0 . The relation (50) can be solved for Go(Wi) 
as follows: 

G0(fe,/i,k) = fi(^-^)+^«*)f(/2jk) 

X A ( W , k ) r ^ i , k ) r ^ * ) . (53) 

I t is to be emphasized that we are now considering the 
function Go(t2,thk) of Eq. (19) to be a given function, to 
be used in the integral (35) and elsewhere (see below). 
The various quantities on the right-hand side of (19) or 
(51) are now unknown functions to be determined after 
the A transformation in any application of the theory 
to a particular system. As has been emphasized in Sec. 3, 
the identities (20) and (21) must continue to be valid 
after the A transformation, for otherwise the derivations 
of Sec. 4 breakdown. We therefore assume that the 
identities (20) and (21) are always correct for any 
system. On the other hand, the identities (22)-(24) and 
Eq. (25) for the determination of A+ and A_ will not be 
valid in general. In the following paper, however, we 
shall show that one obtains these identities, even after 
the A transformation, in the first approximation to the 
thermodynamics of a dilute gas of hard-sphere bosons. 
Of course, the various quantities A, B, C, etc., must be 
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determined in this case by an actual calculation of the 
lowest order graphs (Fig. 1) of the theory. 

In a previous paper6 we have shown that the mo
mentum space ordering in a very low-temperature Fermi 
gas is explicitly exhibited in a quantum statistical theory 
by the application of a A transformation. The formalism 
developed in that paper can also be readily applied to a 
degenerate Bose system above the critical temperature; 
i.e., when (x) = 0. The equations for the A transforma
tion in the (x) = 0 (Bose) case form the basis for the 
A transformation in the present case when (x)^0. 

The basic equation of the A transformation when 
(x)9*0 is 

Gltl(h,h) = t(h)e*l dsGitl'(t2,s)rKs)e-a*Go(s,h), (54) 
Jo 

in which a new function Gi./fe^ijk) is defined. If one 
also defines Li,i'(/2,/i,k) by the equation 

G u ' ( W i , k ) s ^ - < i ) + I u ' ( W i , k ) , (55) 

then Eq. (54) can be rearranged to the form 

L1)l\t2A)-rKh)e--^L1>1(t2,t1)t(t1)e^ 

- I <fcGi,i'(M)A(*,/i), (56) 
Jo 

where Eqs. (15) and (53) have been used. One next 
substitutes Eq. (54) into Eq. (12) to obtain 

x[ dsG1,1
,(t2,s)(?f(syh)r1(h)e-^y (57) 

Jo 
where 

^ih,h) = rKh)e-^l dsG»(h,s)P{s,h)$(h)e^. (58) 
Jo 

Finally, one substitutes Eq. (57) into Eq. (56), thereby 
arriving at an important consequence of the definition 
(54). 

£ i / ( V i ) = [ dsG^(h,s)Pf{s,h), (59) 
Jo 

where 
i v ( M i ) = ^ ( M i ) - A ( / 2 , / i ) . (60) 

We now observe that Eq. (59) has precisely the same 
form as Eq. (12), with unprimed quantities replaced 
by primed quantities. Equation (60), on the other hand, 
gives us the possibility of subtracting from (P'(Wi) all 
of those terms which, when iterated, would give large 
contributions to Liti(t2,ti) at very low temperatures. 
But such terms have precisely the form (51) [after the 
A transformation], and therefore the integral Eq. (59) 
can be solved by iteration in any application; i.e., the 
function P'(fo,t\) consists only of the "small" terms in 
(P'(Mi). 

Equations (50)-(60) give the essence of the A trans
formation. The many further steps required are only 
those which are necessary to demonstrate that the A 
transformation is a completely consistent transforma
tion from a set of unprimed quantities to a set of primed 
quantities. One must also show explicitly how all of the 
primed quantities are to be calculated in order that the 
theory can be applied to any particular Bose system. 
For example, one can see from the above equations, 
that Eq. (58) gives the prescription for calculating 
(?'(t2,h)i a n d that the other primed quantities are deter
mined as soon as (P'fe^i) is determined. In fact, upon 
comparing Eqs. (8) and (9) with Eqs. (35) and (58), one 
may immediately conclude that the prescription (58) is 
equivalent to the calculation of (P'(Mi) by everywhere 
replacing the pair functions (1) in the theory by the 
transformed pair function (35). We shall clarify this 
statement in detail, after first introducing transformed 
master (JJ,,V) graphs. 

Transformed Mas te r (y,v) Graphs 

A transformed master (ix,v) graph or a transformed 
master (IJL,V) L graph is calculated by using the same rules 
and diagram as in the calculation of the corresponding 
untransformed master (n,v) graph or master (IJL,V) L 
graph [Sec. 6 in M I ] , except for the following changes: 

(a) Pair functions (1) are replaced by transformed 
pair functions (35), except for the subtracted wiggly-line 
double-bond terms of rule (viii) in Sec. 6 of ML 

(b) The line factors QwfaJiM) a r e replaced by the 
line factors gMi/(/2,£i,k). 

(c) The outgoing zero-momentum missing line factors 
Gout(t) are replaced by the factors expjjSA^-Gout'CO; 
and the incoming zero-momentum missing line factors 
G in(0 are replaced by the factors [ l+J3 ( 0 )]Gin ' (0-

In order to verify that the second of the above changes 
is consistent with Eq. (35), one must show that the 
following relations exist between the gMi„(/2,£i,k) and 

.thegMl/(fe,*i,k): 

gi,i(fe,/i,k) = r f e , k ) ^ * > / dsQ1,1
,(t2,sJk) 

Jo 

XrKsM)(r™™G<>(s,h,k), (61) 

S o , 2 ^ 2 ^ 1 , k ) = / <folCfc29o,2'C?2,.*l>k) 
Jo 

xr1(^,k)e-^(k)^-«iA(i)(-k) 

X G o ( ^ 2 , k ) G 0
( 1 W i , ~ k ) , (62) 

g2 I0fe^l7k) = f( / 2 ,k)^2e(k)^ 1A(l)(-k) g 2 0 / ( / 2 j / i j k ) > ( 6 3 ) 

Equations (61)-(63) assure that the pair functions are 
all transformed by the correct Go(t2,ti) functions. These 
equations will be investigated in detail in the following 
section and the appearance of the G0

(1)(^,/i) function 
in Eq, (62) will be clarified in this section. 
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In order to verify that the change (c) for the trans
formed master graphs is consistent with Eq. (35), one 
must demonstrate the validity of the following relations: 

G o u t« = exp[£A(°>][ dsGout'(s) 
Jo 

Xexp[-jA<°>]G0
(0)foO, (64) 

G in(0 = [ l + £ ( 0 ) ] exp[*A<o>]Gi„'(/). (65) 

These two relations will be investigated in detail in 
Sec. 7. 

In Eqs. (62)-(65) we have seen the appearance of the 
transformation functions G0

(1) and G0
(0) and their as

sociated factors. The way in which these functions are 
to be used in Eq. (35) and the subsequent equations of 
Sec. 4 is discussed in connection with Eqs. (48) and (49). 
The decision as to when they are to be used will now be 
discussed. I t should be clear that the function GV0)(Wi) 
of Eq. (33) is only to be used when there is a missing 
outgoing zero-momentum line at a cluster vertex. When 
there is an incoming missing zero-momentum line at a 
vertex, then only the corresponding "incoming" f(/) 
factor of Eq. (35) is changed. Thus, the Go(0)(t2,h) func
tion is associated with the transformation of the zero-
momentum factors; and the study of this transformation 
is made in Sec. 7. 

The decision as to when a Go(1)0Wi) function is to be 
used, or when an "incoming" f (/) factor is to be replaced 
by f (1)(0> is determined entirely by whether or not the 
corresponding line is associated with the function G(fo,t\) 
of Eq. (11). Now, it will be noticed from Eqs. (9), (13), 
and (14) that the function G(t2,h) can be associated with 
the (—k) lines in master graphs. Similarly, the function 
Gi,i(t2,h) can be associated with ( + k ) lines in master 
graphs. Of course, this association is only true provided 
that the alternate forms of Eqs. (13) and (14) given in 
M I are not used. In order to facilitate our analysis, 
then, we adopt the convention that the function Gfaji) 
will always be associated with —k lines and that the 
function Gi.iOWi) will always be associated with + k 
lines. (Having arrived at a correct expression, one then 
need not worry about what happens when the sum over 
all k is performed.) 

The convention of the preceding paragraph deter
mines when a function G0

(1)(t2,h) is to be used in the 
transformed pair function (35). I t also explains the 
appearance of the Go(1)(t2,h) function and its associated 
exponential factors in Eqs. (62) and (63). 

We must now discuss the A transformation of the 
function G(t2,h, — k). The basic equation is, again, one 
similar to (54). 

G(h,h9 - k ) = exp[/8A<1>(-k)] I dsGf(t2js, - k ) 
•/o 

X e x p [ ~ s A ^ ( - k ) ] G o ( 1 ) ( ^ i , - k ) , (66) 

in which a new function G'fah, ~ k) is defined. We also 
define a function L'(t2,ti, — k) by the equation 

G'(t2,h, -k)^8(t2-h)+L\t2,th - k ) . (67) 

Equations analogous to Eqs. (56) and (57) can next be 
written down, but we shall omit them here. Rather, we 
shall include the important equations, analogous to 
Eqs. (58)-(60). Thus, if we define a function 

3Ci,i(1),(/2,/i, - k ) 

= exp[--feA<1>(--k)] f dsG0M(t2,s, - k ) 
Jo 

XKi.fah, - k ) e x p ^ A ^ - k ) ] , (68) 

then the function L;(t2,th — k) is given by 

L'(t,hth - k ) = f dsG'(h,s, - k ) * ! , ! ^ ' ^ , / ! , - k ) , (69) 
•Ml 

where 

Ki^'ihM, - k ) 
= Ki. i ( 1 ) ' (Mi, - k ) - A < » ( M i , - k ) . (70) 

Finally, in analogy with Eqs. (50) and (51), the function 
A(1)(Mi> — k ) is given by 

A « > ( M i , - k ) = exp [ - ( f e -* 1 )A<»( -k ) ] 

X[Go«>(/s>/i, - k ) - « ( < , - < ! ) ] , (71) 

A< 1 >( / , , / 1 , -k )={5« ' ( -k )«( fe - / 1 ) 
+ [ l + £ < 1 > ( - k ) ] A « > ( - k ) } 0 ( / 2 - ; 1 ) , (72) 

where we have used Eq. (31) to obtain (72) from (71). 
We can give an interpretation of the A transformation 

for Eqs. (66)-(72) similar to that which we have given 
for Eqs. (50)-(60). We first observe that Eq. (69) has 
precisely the same form, as Eq. (11). Moreover, Eq. (70) 
permits the subtraction of all of the large terms in 
3Ci,i(1)'(Mi, ™k), of the form A^(t2,th ~ k ) , Eq. (72). 
Therefore, with this choice of A (1)0Mi, ~ k ) , the integral 
Eq. (69) can be solved by iteration in any application. 

We return now to the discussion above Eq. (61), and 
define functions 5CMf/(^2,^i,k) in analogy with Eq. (8). 

3C/*,/(^2^i,k)^22 [all different transformed 

master (jiyv) L graphs]k , (73) 

where /JL+V=2. With this definition, the function 
(P'(Wi>k) of Eq. (58) is given in analogy with Eq. (9) 
by the expression 

(P'0Vi,k)= 3Ciii
/(/2,/i,k)+ / <fci<&2%.<>'(Vi,k) 

XG'(s2,sh - k ) 3C0,2'(*i,J2,k), (74) 

where we can also write the functions ^ . / ( ^ i j k ) of 
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(73) as transformation equations as follows: 

Kiti'(t2,tiM) = $~KtM exp [ - / 2 € (k ) ] / dsGQ(h,syk) 
Jo 

XKltl(s9tlfk)Utuk) exp[ / l € (k)] , (75) 

XexpZt*e(k)+tiA™(-k)l, (76) 

5C2,o
/feAJk) = r 1 f e k ) e x p [ - / 2 e ( k ) - - / 1 A ( 1 ) ( - k ) ] 

X / ds1ds2GQ(t27s2M)Go(-1)(h,sh ~ k ) 

X I 2 l o ( v i , k ) . (77) 

I t can easily be seen that Eqs. (75)—(77) are consistent 
with Eqs. (35), (73), and (74) and with the convention 
adopted above Eq. (66). That these three equations are 
also consistent with Eqs. (61)-(63) will be shown in the 
next section. 

Equation (73) defines the function 3£i,i(t2,thk), but 
not the function Xi,iay(t2,h — k), because the trans
forming Go functions in Eqs. (68) and (75) are different. 
Actually, with the convention adopted above Eq. (66), 
Eq. (73) gives 3Ci,i ( 1 ) /(^i, —k) correctly, but in order 
to avoid any possibility of confusion we shall give the 
definiton of 3Zi,iay (t2)th — k) separately, as follows: 

3Ci . i ( 1 ) / (Mi , - k ) 

~H [all different transformed master (1,1) 

L graphs, with the external lines trans

formed by the functions Go (1)fes, — k) 
. a n d f ^ i , - k ) ] _ k . (78) 

With Eqs. (73), (74), and (78), we have specified 
precisely all of the primed functions which have been 
introduced by the A transformation; Eqs. (54)-(60) and 
(66)-(70). I t only remains to clarify the transformation 
of the line factors and zero-momentum factors in the 
next two sections. 

At this point we return to Eqs. (60) and (70) and 
observe that these equations have "eliminated" the 
terms A and A(1) from the functions (?' and 3Ci,i(1)/, re
spectively. What then has happened to these quantities, 
i.e., where have they gone? The answer is partly that 
they have "reappeared" in the transformed pair func
tions (35). The rest of the answer will be given in Sees. 6 
and 8, where we shall find that the functions A(/2^i?k) 
and the closely related f (t2,k) appear explicitly in the 
expressions for the grand potential and the momentum 
distribution. In fact, the nature of the A transformation 
is such that no terms are eliminated or lost from the 
over-all theory. Rather, a rearrangement of terms has 
occurred, after which an iterative solution to the basic 
integral equations is possible. 

6. LINE FACTOR TRANSFORMATIONS AND THE 
MOMENTUM DISTRIBUTION 

, In this section we shall study in detail Eqs. (61)-(63) 
for the transformation of the line factors §p,v(fa,h,k) in 
order to demonstrate their consistency with the other 
equations of the A transformation in Sec. 5. As a part of 
this study, we shall be concerned with the transforma
tion of the function A"Mi„(p), and this, in turn, will lead us 
to an expression for the momentum distribution in terms 
of transformed, or primed, quantities. 

We begin by writing down the transformation equa
tions of the functions L0>2(t2,thk) and L2,o(t2,h,k), Eqs. 
(13) and (14). According to Eqs. (54), (66), (76), and 
(77), these transformation equations must be of the form 

L0l2(t2,thk) = / ^ 26foi£ 0y(wi>k)r~^2,k) 
Jo 

X e x p [ - s 2 € ( k ) - s i A ( 1 ) ( - k ) ] 

XG0(W2,k)G0
( 1>(ji , / i , -k) , (79) 

L 2 i 0 f e ^ k ) = f(/2 ,k)exp[^2e(k)+/1A(1>(-k)] 

XJW(*2,*i,k), (80) 

where 

LQ,2'(t2,ti,k)= / dS2ds13Zo,2(S2,Siik)Giti
/(S2,t2)k) 

Jo 

XG'(shth -k)-Z0)2
(1)/feA,k), (81) 

o'(/2,/i,k)-7 
Jo 

ds2dsiGi,i(t2jS2,k) 

X f f ( M i , - k ) ^ , o , ( v i , k ) 

- 5 f e / 1 ) Z 2 , o ( 1 ) , f e ^ k ) . (82) 

The first thing to notice about these equations is that 
the transformation of the L^v is "opposite" to the 
transformation of the 2£MfJ, by Eqs. (76) and (77) [com
pare also Eqs. (54) and (58) or (75) for the case (/*,?) 
=(1 ,1) ] . On the other hand, the transformation of the 
LM|„ and the gM,„ by Eqs. (62) and (63) is the same, as it 
must be [compare also Eqs. (54) and (61) for the case 
(n,v) = (1,1)]. The next thing to notice is that the func
tions Ko,2

(iy and Z2,o (1) / in Eqs. (81) and (82), respec
tively, must be defined by the expressions 

£o,2(1)/(fe,*i,k) 
= [the part of Xo,2(t2,thk) for which both 

incoming external lines attach at the same 
vertex, except that the external lines must 
attach as free particle lines at both ends] 

= Xo.2(1)(*a,*i,k), (83) 
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*2.0 ( 1 ) , (*2 ,* l ,k) 

= [the part of 3Z2,o
f(t2,thk) for which both 

outgoing external lines attach at the same 

vertex, except that the external lines must 

attach as free-particle lines at both ends] 

= *2.o ( 1 )(Mi,k). (84) 

The function Kot2
a)/(t2,ti,k) includes a 5(t2—ti) h func

tion as a factor, and it must be subtracted in (81) only 
when the incoming external lines also attach at the same 
vertex at their tail end (see Fig. 6 in MI) . Similarly, the 
function K2>o(1)'(t2,thk) must be subtracted in (82) only 
when the outgoing external lines attach at the same 
vertex at their head end (see Fig. 7 in MI) , but in this 
case the Kronecker 8, 8(fa,ti), factor in (82) assures this 
condition. The reason why these external lines attach 
as free-particle lines so that there are no corresponding 
transformation functions at the two corresponding in
coming (or outgoing) positions in Eq. (35) is that there 
are no associated Gi,i or G functions with Z0)2

(1) and 
K2,o

(1) [see Eqs. (13) and (14)]. Thus, the external lines 
cannot be transformed and therefore the equalities of 
the second lines of (83) and (84) are explained. [The 
functions i£M,v(1) and ZM>„(1)/, where GU,JO = (0,2) or 
(2,0), while being equal, are nevertheless calculated 
differently because of their internal structure.] We also 
observe that since the external lines of Ko,2

(iy and 
K2,o

ay are not transformed, Eqs. (79) and (80) are not 
quite correct. However, the definitions (83) and (84) 
insure that no error is made because of the phrase 
"at both ends/ ' which means that the external lines 
attach at both of their ends as free-particle lines. Thus, 
one must be careful to use Eqs. (81) and (82) correctly 
in any application. We finally observe that all of this 
difficulty with the functions K0)2

(1)/ and K2>0
ay has its 

origin in rule (i) for linked-pair (fi,v) graphs (Sec. 3 in 
MI) , which states that no wiggly-line double bonds may 
occur in any graph. 

We next define three functions XM,/(p), for the case 
k = p ^ 0 , 

• / 
Ki,i'(p)^ AiIi.i'C8><i,p), 

H KQ,2 (p)= / dt2dtiL0,2(t2,thp), 
(85) 

i^oW-WtoAp). 
In this particular case, it must be understood that the 
functions K0l2

(iy and K2>0
(iy do not contribute to the 

^M, / (P )> because there are no wiggly-line double-bonds 
involved. Then, according to Eqs. (54), (55), (15), (79), 

(86) 

glil
/(/2,/i,k) = G i , i , ( ^ i , k ) + / ds2Giy(t2js2,p)N2 

/ 
J o 

o'(p) f 
J o 

(80), (28), and (32) the relations between the XM,/(p) 
and the corresponding 2£M,„(p) of Eq. (54) in M I are 

^i , i(p) = [ l+^ (p ) ] f ( f t p ) 

Xexp[ / ?6 (p ) ] [ l+Z 1 , 1
/ (p ) ] - l , 

^o,2(p) = [ l + ^ ( p ) ] [ l + ^ ( 1 ) ( - p ) ] ^ o y ( p ) , 

*2.o(p) = fG3,p) e x p [ ^ e ( p ) + A ^ ( - p ) ) ] Z 2 , 0 ' ( p ) . 

Equations (86) will be used in conjunction with the 
functions iVM,/(p), which we next define in terms of the 
corresponding unprimed NptV(p). 

Ni.i'(p)**ll+B(p)l?(p,p) exptfe(pWltl(p), 

^oV(p)sf05,P) expD8(6(p)+ACD(-p))]iVo.2(p), (87) 

^ 2 , o , ( p ) ^ [ l + ^ ( p ) ] [ l + - B ( 1 ) ( - p ) ] ^ 2 , o ( p ) . 

These definitions have been made in order that simple 
relations will result between the iVMtV'(p) and the i£M,/(p). 

We now substitute Eqs. (86) and (87) into Eqs. 
(35)-(37) of MI and obtain the following transformed 
equations: 

^ 1 , / ( p ) ^ / ( p ) [ l + Z 1 ( / ( p ) ^ l i / ( p ) + Z 0 ) / ( p ) i V ' 2 ( o
, ( p ) ] 

= / (p ) [ l+* i , i ' (p ) t f i , i ' (p ) 

+ X 2 , o ' ( - p ) i W ( - p ) ] , (88) 

^0.2 ,(p) = l' ,(p)CXl.l /(p)^o i2
,(p) 

+K0Jb)Nltl'(-p)R(p, - P ) ] , (89) 

N2,o
f(p)-v/(p)LKltl

f(p)N2,o
,(p) 

+ « 2 . o / ( p ) ^ i , 1
/ ( - p ) J 2 0 ? , - p ) ] , (90) 

where we have not given the second forms of Eqs. (89) 
and (90), because they only involve the replacement 
p ^± — p. The functions v'(p) and R(t,p) introduced into 
these equations are defined by 

X e x p [ - / € l ( p ) ] , (91) 

" ' (P )^ [ l+£ (p ) ] f ( f t p ) expD?e(p)>(p) 
X{l+v(p)-[_l+B(p)^0,p) 

XexpD3e(p)>(p)}-1 

= [ l+£(p) ] f (£ ,p ) exp/3(g+A"») 

X { l - [ l + 5 ( p ) ] f C 8 , p ) expP(g+A«»)}-\ (92) 

where we have used Eqs. (7) and (40) to obtain the 
second line of (92). 

We are now in a position to investigate the con
sistency of Eqs. (61)-(63) with all of the other equations 
of the A transformation. In fact, by using the explicit 
expressions for the g,,,„(Mi>k) [(66)-(72) in M I ] , one 
can verify that Eqs. (61)-(63) are consistent if the fol
lowing expressions for the §M,»'(<2,<i,k) are used. 

ds1L^'(h,s1,v)+L2,0'(t2,l3,V)N0,2'(p)G1,1'(^h,p) 

+ I dsG1,1'(t2,s,p)N1y(p)Giy^,t1,p)+L2,o'(h,^p)Ni,i'(-p) / dsU,J{h,s,p)R((}, - p ) , (93) 
Jo Jo 
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8o12 /fe^k) = ^o,2 / fe^k) + 2A1 ) 1
/(p)G1 ,1

/(^2 ,p)/ &Loi2
/(^i,p)+iVro,2,(p)Glil

,03,/2,p) 

J 0 

X dsG1,1
f(P,s,-p)(t>(sJth-p)R-^}~p)+N2,o

/(p) ds2dslLQ>2
,(t2,s2,p)L0,2

f(shthV)1 (94) 

S2,o /(/2A?k)-i:2(o
/(^,/bk) + 2Ai, i /(p)/ dsGi,i'(t2,s,p)Lito'(p,ti,p) 

Jo 

+ # 2,o'(p) / dstfk&Jfa&^Gu'OhSi, -p)R~Kh, -p)+^o.2 ,(p)^2.o ,(^Ap)^2.o ,(/3^i,p), (95) 
Jo 

where k—>p when k cannot be zero, and where the appearance of the functions <t>(s,ti) and ErKh) in the 
function <KMi>P) in Eq. (94) is given by third terms of Eqs. (94) and (95), There seems to be no 

p simpler way of treating the functions go,2 and g2,o. With 

0(*2,*i,P) = *(**P) / ^Go(M,P)Go (1)"1(j^i,p). (96) t h i s qualifying discussion, Eqs. (61)-(63) have been 
J 0 demonstrated to be consistent with the other equations 

The determination of the expression for & / , Eq. (93) f j ^ i ^ ? n s f o r m a t i ? n - I n * > • 2 " 4 w e ?h™ E^. 
is completely straightforward. One has to be very careful (93)-(95) diagrammatically, using the graphical nota-
in the determination of g0,2' and g2,o', however. The t l o n o f M L 

reason is associated with the convention which we have W e n o w r e t u r n t 0 E c l s - (8 6) a n d (8 7) a n d w n t e d o w n 

adopted above Eq. (66). In order to simplify the treat- t h e relations between K0,*'(v) and £2 ,0 '(p) and between 
ment of these two quantities we have first made the M>,s'(p) and N,,0'(p), with the aid of Eqs. (39) in MI . 

replacement (*2,p) ^ (h, - p ) in the Gi,i(M, - p ) terms R R'(xfi = Y\A-B(v)YlA-B<-»(--oY\lrHB n) 
of Eqs. (67) and (68) in ML This relabeling can be done 2'° KV) „ rJt, \ o> ? A < m n ! ,, ^ 
because the functions &,.,(fe,/i,k) only occur as internal XexpL0(e i ( -p ) -2 (g+At >))J#0,2 (p), ^ 

lines for which the variables h, h, and p are each inte- Ar2,o'(p) — [ l + 5 ( p ) ] [ l + J 5 a ) ( ~ p ) i ~ ' ( f t p ) 
grated over their full range of variation. After doing XexpFj3(ei(—p) — 2(g+A (0)))]iV0,2 '(p). 
this, one finds that there is one term in both g0,2 and 
Q2,o which involves two Gi,i functions. For each of these Thus, there are only four independent functions in 
terms, one must replace the transformation functions Eqs. (88)-(90) instead of six. In fact, if one writes down 
G0

(1) by Go in Eqs. (62) and (63), and this explains the the corresponding identities relating Z0,2 '(p) and 

, * 2 

\ i «; 1,1 V l 2 * l , k ) 

U . 

FIG. 2. The graphical representation of Eq. (93) for 9i,i'(Mi>k)> where k—> p when k cannot be zero. 
A factor R (/?, — p) multiplies the last term. 
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<7 0,2 **2,* I, 
r\ 

k )^ 

FIG. 3. The graphical 
representation of Eq. 
(94) for go,2,fe,^i,k), 
where k —> p when k 
cannot be zero. The 
third term must be 
multiplied by <f>(s,h, — p) 
i?_1(/(3, — p) and an inte
gral over s then per
formed [indicated by 
the notation s(h)2-

*2 | \ I ^ ^ M / D \ 

SW + X 2 

^2,o/(—p) as well as A7*)^"-?) a n d A .̂o'Cp), then one 
finds that the two Eqs. (88) are identical. The equiva
lence of the Eqs. (89) and (90) follows from (97). We 
may now make a partial solution to the coupled integral 
Eqs. (88) and (89), obtaining the following expressions 
for Ari,/(p) and No/ip) [simplified because of our 
introduction of the minus signs in the last term of the 
second of Eqs. (88)]: 

NiAv)=Av)ii-A-p)KiA-v)To'(-j>)l-\ (98) 
NoAp)=V(pV(-v)KoAv)m -P)DD'(-P)]-1 , (99) 

where 

Z > ' ( P ) = [ I - / ( P ) W ( P ) X W ( - P ) * I . I ' ( - P ) ] 
-v'(j>y(-p)Ko,2'(p)KoAp)R(P, - P ) . (100) 

We can also use Eqs. (87) in conjunction with Eqs. (40) 

FIG. 4. The graphi
cal representation of 
E q . ( 9 5 ) f o r 
S2,o'(Mi,k), where 
k —> p when k cannot 
be zero. A factor 
R~l(k, — p) multiplies 
the third term. 

4..o l ti.1. k ) 

in MI to determine the limiting forms of Ni,i(p) and 
No,2;(p) when p •—» 0. These are [assumed that the factor 
multiplying iVri,i(p) in the first of Eqs. (87) does not 
vanish when p —> 0] 

lim {Nt 
p-*0 

lm[tf l f l ' (p)}-i = 0, 
p-0 

'-'(P^o/fa) 
Xexp[-/3(g+ A^(p))][l+£(p)]} = - 1 , (101) 

when (%)>Q. 
In an actual application to the calculation of the 

various functions i£M,/(p) and iVM,/(p) for a real or 
model degenerate Bose system, Eqs. (101) serve as 
useful checks on the solutions obtained. More useful 
forms which are completely equivalent to the limits 
(101) are obtained by combining Eqs. (98)-(100) with 

- k «s 

»Lo 
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(101). This yields the expressions (when (x)>0) 

= -[ i+5^(P)]r108,p) 
X e x p [ - £ ( A ( ° ) + g ) ] Z o / ( p ) } , (102) 

= ~ [ l + ^ ( p ) ] - 1 e x p [ ^ ( A ^ ) ( p ) + g ) ] X 2 i 0
/ ( p ) } ? 

which are equivalent according to the first of Eqs. (97). 
As a final matter for this section we write down the 

relation between the momentum distribution and 
^i. i ' (p)- Referring to Eq. (31) in MI and to the first 
of Eqs. (87) we obtain 

<^(p))=[i+^(p)]-1r1(ftp) 
Xexp[ -^ (g+A(o) ) ]7V 1 ( / (p ) - l . (103) 

The first of the identities (101) then shows that the 
momentum distribution has a singularity at p = 0 when 
(x)>0. This is consistent with the interpretation of (x) 
as the macroscopic density of zero-momentum particles. 
Returning to the discussion at the end of Sec. 5, we see 
that the function f (fi,p) has explicitly appeared in the 
momentum distribution, both in Eq. (103) as well as 
in the function / ( p ) , Eq. (92), which is an essential 
quantity in the solution (98) for iVi,i'(p). Upon com
bining Eqs. (98), (92), and (103), we obtain an alternate 
expression for the momentum distribution: 

< » ( P ) > = [ I + ^ ( P ) X I - I ' / ( - P ) « I . 1
/ ( - P ) ] 

X D ^ - P ) ] - 1 - ! . (104) 

7. A TRANSFORMATION FOR ZERO-
MOMENTUM FACTORS 

In this section we shall study in detail Eqs. (64) and 
(65) for the transformation of the zero-momentum 
factors Gout(t) and Gin(t). This investigation will then 
complete our study of the consistency of the A trans
formation equations in Sec. 5. We shall begin this study 
by observing that the function F(xfi,g$) of Eq. (83) in 
M I is invariant under the A transformation. Thus, we 
may immediately write 

OF(#,/3;g,0)==]£ [all different transformed 

master (0,0) graphs], (105) 

where transformed master (0,0) graphs have been de
fined in Sec. 5. Then we may define transformed func
tions 3Cin'(0 and 3COut'(0 in analogy with Eqs. (93) in 
M I by the functional differentiations. 

Kin\t)^l(l+BW)xttexpp(g+AW)y-i 
8ttF 

X-
8G0vit(i) 

5ttF 
X-

SGin'W 

S' 

9' 

(106) 

where, in the first of these expressions, the functional 
differentiation includes the elimination of one tempera
ture integration. In both of the expressions (106) the 
internal line factors g/z./fe^ijk) °f the transformed 
master (0,0) graphs are to be held constant. Also, one 
difference between the definitions (106) and the expres
sions (93) in MI is the division by the extra missing line 
factors ( l + $ ( 0 ) ) and exp(/3A(0)), introduced in change 
(c) for transformed master (JJL,V) graphs (see Sec. 5). 

Our task is now to show that a consistent relation 
exists between the transformation Eqs. (64) and (65) 
and the definitions (106). In this connection we define 
functions K0nt(t) and j£m'(0> which are different from 
the functions of (106) by the equations 

(107) 
G0J(t)^5((3-t)+K0Ut'(t), 

Then, from Eqs. (93) in M I and (65) and (106), we have 

aCout'W = e x p [ - OS-1) A<0>]£out(0. (108) 

But from Eqs. (64) and (33) we also have that 

Z o u / ( 0 = exp[-(^-OA ( 0 ) ]Zout( / ) 

- [ dsGont
f(s)A^(s,t) 

J o 

'o 
(109) 

where 

A ^ f e O ^ e x p E - f e - O A W j ^ o ^ K M i ) - ^ ^ - ^ ) ] 
= [J5<0>5(^-/i) + (l+J5<0>)A<°>]^2-^). (110) 

We see that Eq. (109) has the form of the A transforma
tion Eqs. (59) and (60) or (69) and (70), and that we are 
permitted to subtract large terms of the form fGokw 

from Xout'W- We shall return to a detailed discussion 
of Eq. (109) after first examining the A transformation 

oiKUt). 
According to the first of Eqs. (106), Eq. (64), and the 

definition of transformed master graphs in Sec. 5, the 
relation which must exist between 3Ch/(0 and K-m(t) is 

[l+5(°>]5Cin /W = e x p [ - / A ^ ] 

X / dsG0«»(t,s)KUs). ( I l l ) 

Thus, 3Zin(t) differs fromi£in(/) by a A transformation 
at the cluster vertex, where the zero-momentum factor 
is attached. But this last equation can be rewritten with 
the aid of (110) in the form 

[ 1 + i ^ ] - 1 exp[-/A<°>]Z in(0 

= ae i„
/(0-/ dsA^(t,s) 

Jo 

Xexp[-sA(°>]£ i n ( s ) [ l+£(°>]-
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FIG. 5. The graphical 
expansion of 3COut'(0> 
where only the 3 one-
vertex terms have been 
shown. The external 
wiggly line in each case 
is the zero-momentum 
line which attaches the 
figure as a zero-momen
tum factor to a master 
graph. The number 
under each graph is 
its symmetry number 
[after the differentiation 
(106)]. 

* * > > - * > ' . + * > > . + * > ' * + - -

• 1 
( I ) t»> f t ) 

The second of Eqs. (107) and Eq. (65) can then be sub
stituted into this equation to give the result 

Kin
f(t)=Kin

f(t)-( dsA«»fo)Gtn'(s). (112) 

Equation (112) is seen to be very similar to Eq. (109), 
and both of them involve the same A(0) function (110). 

With the above analysis of the zero-momentum fac
tors, we have completed the demonstration that the 
equations of the A transformation in Sec. 5 are com
pletely consistent. There remains, however, the clarifica
tion of how the function A ( 0 )(^i) , Eq. (110), is to be 
determined in an actual calculation. The answer is that 
one must always exhibit the functions 3COut'(0 a n d 
Kin(t), defined by (106), in the form of Eqs. (109) and 
(112), respectively. Then the determination of the func
tion A(0)(/2^i), which must (and will) be the same in 
both cases is quite straightforward, provided that the 
difficulties now to be discussed are clearly understood. 

In Figs. 5 and 6 we show the graphical expansion of 
the functions 3Cout'(0 a n d 3Cm'(0> respectively. Only the 
3 one-vertex terms have been included in each of these 
figures, and the graphical notation is that of MI. We 
observe that after the differentiation (106), one of the 
zero-momentum factors in &F is removed; the corre
sponding "missing line" is shown in each of the graphs 
of Figs. 5 and 6. This wiggly line is the one which 
attaches the corresponding graph (as a zero-momentum 
factor) to a master graph. Because it is distinguished 

from the other incoming (outgoing) "missing" line in the 
first and third graphs of Fig. 5 (6), the factor of | in 
rule (i) in Sec. 6 of MI is not included in these cases. 

Consider now the first term in 3COut'(0> Fig. 5. The 
corresponding expression, 

Xout'(t)0=K(l+B(0))xV exp0(g+A<<»)] 

X / dsidSlG0J(s2)G0J(s1) Gin'W, (H3) 

Jo Lo oJ, 
includes two Gout' functions and one G^ function. 
Clearly, only one of the Gout' functions can be the one 
in the second term of (109). Therefore, the contribution 
of this term to Aw(s,t) is determined by setting the 
selected Gout' function equal to 8(13—s). A similar dis
cussion applies to the first term of 3Zin(t), Fig. 6, where 
in this case we must (effectively) set one of the Gin'(0 
functions equal to b(tf—t). The contribution to Aw(s,t) 
will be the same as from (113). 

We notice from the above example that the integral 
equations (109) and (112) are much more nonlinear than 
Eq. (59), say. Thus, the A transformation Eqs. (50)-(60) 
are only concerned with one Gi,/ function along the 
"p line" of an L graph. Similarly, in Eqs. (109) and (112) 
we can be concerned with only one of the zero-mo
mentum factors in any given graph of Figs. 5 or 6, 
because the A transformation, Eqs. (64) and (111), are 
essentially linear integral transformation equations. But 
the question then arises as to which zero-momentum 

FIG. 6. The graphical 
expansion of 3Cin'W, 
where only the 3 one-
vertex terms have been 
shown. The external 
wiggly line in each case 
is the zero-momentum 
line which attaches the 
figure as a zero-momen
tum factor to a master 
graph. The number 
under each graph is 
its symmetry number 
[after the differentiation 
(106)]. 

* * > ' - * V » . + *'i"ltJ. + * > ^ + -

s^J + sty }s2
 + 

( I ) ( I ) <e> 
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factor should be exhibited in (109) or (112) when there 
are several possibilities. This apparently very compli
cated situation seems to present no essential difficulties 
in the application to a Bose system because there always 
seems to be only one choice which results in the form of 
the second terms in (109) and (112). [The "two" choices 
in (113) are really the same.] Therefore, we assume that 
Eqs. (109) and (112) "solve" the zero-momentum self-
energy problem and one has only to be careful in their 
application. 

We next consider the third term in 3CoUt'(0> Fig. 5. 
The corresponding expression, 

X o u t
/ ( / ) 2 = K l + ^ ( 0 ) ) e x p [ - ^ t e + A ^ ) ] 

X W i E g o y ^ k ) G i n ' ( 0 , ( H 4 ) 
Jo k LO 0J« 

includes no Gout functions (explicitly) and only one 
G^ function. How, then, is Eq. (109) to be used in this 
case? The answer is that the line-factor £0,2(s2,shk) 
contains Gont

f functions (implicitly) and when an ex
pression for this line factor is inserted into (114), then 
one can identify those terms which are of the form of the 
second term in (109). A similar analysis applies to the 
third term of 3Z0ut(t), Fig. 6. Thus, it seems that Eqs. 
(109) and (112) can always be applied in actual calcula
tions. In the,third paper of this series we shall write 
down the results of a complete analysis of the terms 
shown in Figs. 5 and 6 for the case of a dilute gas of 
Bose hard spheres. 

We conclude this section by observing that the factor 

where QF is given by Eq. (105). Thus, all of the terms 
except Litl

(tl) are easily transformed by the equations 
of the A transformation. This one term requires special 
consideration. 

According to Eqs. (92) in MI , the difference between 
Li,i(T)(t2,thk) andZa,i(/2^i,k), Eq. (12), is that the upper 
integration limit in the integral equations for Z,I ,I ( T ) is 
the temperature variable r ^ / 5 . I t must be emphasized 
that this quantity r is a parameter in the integral equa
tions, and not the variable of integration. Thus, it is 

e exp/3(g+A(0)) occurs frequently in the expressions for 
quantities after the A transformation [see Eqs. (92), 

s (106), and (113)]. This is not just a consequence of the 
s notation which we have introduced, e.g., in Eqs. (28) 
f and (35), because this notation has been introduced only 
5 after having studied the model system of a dilute gas 
t of Bose hard spheres. In fact, the only way in which the 

theory can be made to yield meaningful results is if 
r g=— A(0) in the limit T—>0. Perhaps then, this is a 

general relation for a degenerate Bose system ((x)>0). 
Thus, if we interpret — A(0) as the self-energy of a zero-
momentum particle, then the thermodynamic potential 
per particle, i.e., the "activity," in the system will 
be given by 

£ = _ A ( o ) w h e n ( s ) > o . (115) 

[The minus sign can be understood by referring to 
Eqs. (2) and (3).] We have found no further justification 
for Eq. (115) other than the mathematical necessity 

' that it must hold in the limit T —> 0. On the other hand, 
it seems to be valid in applications and it can always be 
independently verified by a thermodynamic calculation 
of g. We shall assume that (115) is correct, but shall 
not use this assumption until the following paper. 

8. A TRANSFORMATION OF GRAND POTENTIAL 

In spite of the detailed investigations of the equations 
- of the A transformation in the preceding three sections, 
> it is still a nontrivial matter to transform the grand 
: potential. With the aid of Eqs. (61)-(65), (75)-(77) 

(S3), (84), (87), (91), and (111), the expression (91) in 
• M I for the grand potential can be written as 

only after one has solved (approximately) the integral 
equations that one may set T = h for use in (116). How
ever, in the discussion below, one may assume that 
0 > T ^ ( / j , * i ) . 

Now, because the integral equations for £i fi
( r )(Mi>k) 

involve the parameter r instead of /?, we must replace ($ 
by r in the relevant A transformation equations. Re
turning to our original examination of Eq. (16), we 
observe that we must set B'=B"=0 in the correspond
ing expression for P 0

( r ) 6 ^ i , k ) , because these terms can-

p 

iVi . i ' (p)^i . i ' ( -p)-^o. j ' (pWi.o ' (p) JR- IOJ,-p) 
+ [ ( l + 5 < « ) « 0 exp/3(g+A<°>)] 

X 

[ l + 5 ( p ) ] C l + S ( - p ) ] r 0 8 j » ) f 0 8 , - P ) exp20(*+A<«) J 

Jo J * Jo 

I E [ dhdh{ Z (l+5^,)8v,M '(M2,k)^./(Wi,k)+-K2,o»> 'fe,<2,k)ii:o,2<1>'(Wi,k)}, (116) 
k JO (fir) 

u-\-v=2 
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not contribute when T < 0 . Similarly, in the identity (24), Eqs. (42) by the quantities 
we must set B'=B"=0, and therefore (24) and (21) . .... 1N r . , _ / f X_ r /f x-,~ ,^w , N 

together imply that 5«>(*2) is zero. I t also turns out ^ ^ ( M O - C l + ^ k ) ] exp[-/e(k)]C, iT<<)(*,k), 
that C' = C, when £ ' = £ " = (). Finally, we must set 0 - > r ^ i , T

( > ) ( / , k ) - [ l + 5 ( k ) ] exp[-te(k)]Cf|T<>>(*,k) , 
in identity (21) [or (24)], and this means that the 
function.G0(/2,*i) of Eq. (19) is changed to a function w h e r e *= + o r ' - • Similarly, the quantity f(/,k) of (47) 
Go^fah), where is replaced by 

W > ( W 1 ) = ( l + B ) { [ « ( / , - / 1 ) + A + C + , o ) ( < t ) ^ f . ( a ) = [ l + B ( k ) ^ C ^ « ( a ) - ^ « f t k ) ] . ( 1 1 9 ) 

— A_CL T
(>) (t2)e~tlA~~]d(U—ti) There is no corresponding change in the functions A±(k) 

r ' ( < ) , v _hA+ of Eqs. (25) and (26), although we have not proved 
~t~L + +,T Kve fo^ this is also the case after the A transformation 

- AX_,T<<>(*2)^ lA-]0(*i-fe)}. (117) [see discussion below Eq. (53)]. 
We can now apply the above discussion to the A 

The implication of this change for the equations of transformation (Sec. 5) of £i , i ( T )(Mi,k) . Equations (53) 
Sec. 4 is that we must replace the A^K) and Ai{>) of and (51) become in this case 

G o ^ M b k H ^ - O + e ^ (120) 

+ [ A ^ + , T < < > ( * a y i € + - ^ - A ^ < \ h ) e ^ ~ y { h ~ h ) } . (121) 

Using these function, GO(T) and A ( T ) , we can then write down the corresponding A transformation Eqs. (54)-(60) 
for the function Li,i (T)(Wi,k) of Eqs. (92) in MI . Thus, one finds that 

Lx^KhM) = ir{h)e^l ^ ^ a ( r ) , ( ^ 0 [ i ? ( T ) X ^ i ) + A ^ ) ( ^ 1 ) ] ^ K / i ) ^ i l % (122) 
•In 

where 

Gl>i(T>'(Mi>k) = 8 ( f e -O+£ i . i ( r ) ' (Wi ,10 , 

i i , i ( T ) ' (Mi ,k )= I dsG1,1^'(ti,s,k)P^'(s,h,k), 
Jo 

<p< '>U,U0=[J > < T ) U, ' i ,k )+A ( r ) (Mi ,10] 

= f r - ' f e , k )^ ( 2 < ( k ) [ dsGa^(h,s,k)P(s,h,k)Uh,ky"(k) 

Jo 

= Ki , i ( T ) ' (Vi»k)+ / *1<fa«K».o(T)'(Mi,k)G(T)'(*»,*i, -k )Xo ,2 ( T , ' f e ,Hk) , 

(123) 

' 0 

G<*>'(Mi, - k ) = 5 f e - / 1 ) + L ^ ) , f e ^ - k ) , 

£ ( r ) / ( M i , - k ) = [ dsG^'fas, -k)KltlM'(s,h, - k ) . 

We notice in the last of these equations that the function Ki,ia)'(t2,ti, —k) of Eq. (70) is not changed for the case 
/5—> r, because the transformation functions G0

(1) and A(1) of Eqs. (31) and (72), respectively, are independent of 
/? (or r ) . On the other hand, the functions 3CM,„(T)'(Vi>k) are different from their r—>/3 counterparts, defined by 
(73). In the present case, the functions 3CM,„(r)'(Mi>k) which are related to the unprimed functions by equations 
similar to (75)—(77), must be defined by the expression 

5C^I„
(r)/(^2^i7k) = X [&U different transformed master (1,1) L graphs, with the external lines 

transformed by the functions Go(r)(U,s) and f (r)(/y)]k. (124) 

In this definition (i) and (j) may be either (1) or (2), according to the various cases which can arise for (JA+V) = 2. 
I t is to be emphasized that the functions 5CM)l,

(r)/(^2^iJk) of (124) differ from the corresponding functions of Eq. (73) 
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only in the transformation of their two external lines. Corresponding internal lines are all transformed by the same 
functions in (73) and (124). 

I t is now possible to substitute Eq. (122) into Eq. (116). This yields the completely transformed grand potential 

0 / (*A&a) = £ £ l n f E l + M - p ^ J l + i / f o ) ^ exp/%+A«»)] 

X G i n ' ( /3)- [ dtG0J{t)K-J{t)- f dt1dt2GQJ(t2)A^(t2)t{)Gin
,(t1)

1i 

+QF(*Ag&)+i: / dh *2Gi,i ( ' l ) /(/i ,<2,k)[P^> /(/2^1 ,k)+A<^(^1 ,k)] 

k Jo Jii 

- 4 E / dhdt2{ E ( l + ^ , 0 g > , M U , f e , k ) 3 e M ^ (125) 
0 M 

where we have used Eqs. (97)-(100), (103), (104), and 
(112) to obtain the particular form shown. The sum 
E(M,»O m the ^ a s t term i s o v e r the three possibilities for 
which ii+v — 2. Referring to the discussion of the end of 
Sec. 5, we see that A functions appear explicitly in the 
grand potential, where it is the grand potential which 
determines the thermodynamics of a degenerate Bose 
system. Therefore, particular expressions for the A 
functions directly affect the thermodynamics. 

With Eq. (125), we have completed our formal study 
of the A transformation and its effect on the various 
functions of quantum statistics. The only thing which 
remains to be done is to exhibit the solutions to the 
identities (20)-(24), in order to obtain a better feeling 
for the functions A(t2ythk) and A(T)(/2,*i,k). This will be 
done in the following section. 

9. DETERMINATION OF THE A FUNCTIONS 

In this section we discuss the determination of the 
A functions. The zero-momentum A function, A(0)(/2,*i), 
is determined merely by identifying terms of the type 
(110) when either of the functions 3COut'(0 o r 3Cm'(0 *s 

explicitly calculated and then cast into the form of 
Eqs. (109) or (112), respectively. Similarly, the — k A 
function A(1)(/2,/i, — k) is determined merely by 
identifying terms of the type (72) when the function 
•3ei,i(1)'(*2,*i, - k ) of (78) is written in the form (70). 

The functions A(t2,h,k) and A(r)(/2,^i,k) are deter
mined by identifying terms of the type (51) and (121) 
in the functions (P'(t2,h,k) and (PiT)'(t2jthk), respectively 
[see Eqs. (73), (74), (60), (123), and (124)]. The various 
quantities (A^<\Ai(>)) and ( i i , T

( < ) , i i ] T
( > ) ) of Eqs. 

(51) and (121), respectively, where i=+ or —, will 
then turn out to be the solutions of identities of the 
type (20)-(24). 

As was discussed below Eq. (53), only the identities 
(20) and (21) can be expected to remain invariant under 
the A transformation. The other three identities will, in 
general, be different after the A transformation, from the 
particular expressions (22)-(24). I t is well to observe 

at this point that the identities of the type (20)-(24) 
will actually be integral equations which may or may 
not be solvable by an iteration procedure. Actually, the 
same is true of the determination of the functions B{0) 

and A<°> by Eq. (110), and of the functions B™ and A<1} 

by Eq. (72). Nevertheless, there is always an algebraic 
part of the solution to the identities of the type (20)-
(24), and it is this part which we shall here be concerned 
with. The functional dependence on the (Ai(<),Ai(>)) of 
the various coefficients in these identities must then be 
dealt with separately. 

In the first approximation to a dilute gas of Bose hard 
spheres with (x)>0, it is found that the identities (20)-
(24) are all unchanged by the A transformation. As will 
be shown in the third paper of this series, one has then 
only to correctly identify the various coefficients in 
these equations. I t is therefore of value to solve these 
equations, and we shall now write down the solutions 
for the particular approximation B' = B" = B = 0, in 
which case one finds that C = C also. This approxima
tion corresponds to the neglect of an excluded volume 
effect (due to the finite size of the hard cores Q, is 
effectively smaller), and this is a very small effect in a 
dilute gas. In this approximation, one can also omit 
Eq. (24) and set J3«>(*2) = 0 in Eq. (21). 

We now insert Eqs. (118) with B=0 into the identities 
(20)-(23), where we need only consider the general case 
T</3 of Sec. 8, because when S«)(/2) = 0, 

Ai^(h) = Ait^(h), and At<»(h) = Aitfi<»(h). (126) 

Thus, we obtain the simpler equations 

[ ^ + i T ( » ( / 2 ) - ^ + , r « ) ( / 2 ) > ^ + 

-i+C^_>T(»(/2)-^_,r«)(/2)>^, 
A+,T«\h)e"+=AS<\h)e"-, 

(A+-D)-iA+,r<»(ti) = ( A _ - P ) - ^ _ , T < » f e ) , 
(127) 

A+(A+-D)-^A+,T(>\t2)-A + ,T «) My* 
= l + A _ ( A _ - J D ) - 1 [ ^ ^ , / » ( / 2 ) - J _ «) («>*»-, 
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in which we have used Eqs. (40). The solution to Eqs. 
(127) is as follows: 

^+,T«>(/2) = (A+-A_)-2(A+-Z))(A_-D) 
Xf r(r)e"-(e-(2e+— e-'2'-), 

Xf r ( r )e T f + (e • ( 2 e + - e ~ ( 2 f i , (128) 

4+ > T<»&) = ( A + - A )-»(A f--D)fT(/0 , 

A...To>(tt) = ( A + - A_)->(A...-Z>)f,(fe), 

where fT(^) is the function of Eq. (119). The explicit 
expression for this function (when B — 0) is 

Uh) = C( A + - £ )*"+- (A_ - Z>) e - ] - 1 

X [ ( A + - J 9 ) e ( r - ^ ) ^ - ( A _ - P ) e ^ - ^ ) ^ ] 

— > [ ( A + - Z ) ) e - + - ( A _ - Z ) ) ^ e - ] - 1 ( A + - A _ ) . (129) 

We finally discuss the functions A+and A_ of Eqs. (25) 
and (26). Equation (25) for the determination of A+ and 
A_ is also found to be valid, to first approximation, for 
a dilute gas of Bose hard spheres with (x)>0. The 
quantity D is given quite generally by the expression 

Z>(k) = 6(k)+61(~-k) = 6(k) + e(-k)-A(1)(--k), (130) 

where the e's are defined in Eq. (40). The energies c±(k) 
are therefore given by 

e t = i [ A « > - ^ ] ± i [ ( D - 4 ) » - 4 C Z ) ? / » > (131) 

according to (26), where the quantities A and C are 
determined by the derivation of Eq. (25) for the Bose 
gas of hard spheres. Finally, the quantities (A+—D) and 
(A_-Z>) in Eqs. (127) and (128) are alternately ex
pressed by 

C A ± ( k ) - Z ? ( k ) ] = - [ e ± ( k ) + e i ( - k ) ] . (132) 

The assumption which we have made in connection 
with Eq. (115) that — A(0) is the energy per particle of 
the zero-momentum "superfluid" in a degenerate Bose 
system has an implication for the quantities e±(k), given 
by Eq. (40) or (131). Because one expects that the 
elementary excitations in a degenerate Bose system are 
of a phonon type e(k) = Ck for low-momentum values, 
it must be true that the functions e±(k) —-> 0(k) as 
k—> 0. In fact, it will be found in the following paper 
that this is indeed the case for a dilute gas of Bose hard 
spheres. What has not yet been clarified is why two 
functions e+(k) and e_(k) have appeared in the theory. 
That such a situation can exist in a degenerate Bose 
system has previously been suggested by Lieb.5 
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